There are #2# intervals to consider
#I_1=(-oo,-3)# and #I_2=(-3,+oo)#
In the first interval #I_1#
#((-x-3)+x)/(x+2)-1>0#
#=>#, #(-3-(x+2))/(x+2)>0#
#=>#, #(-x-5)/(x+2)>0#
let #g(x)=(-x-5)/(x+2)#
Build a sign chart
#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaa)##-5##color(white)(aaaa)##-3#
#color(white)(aaaa)##-x-5##color(white)(aaaaa)##+##color(white)(aaaaa)##-#
#color(white)(aaaa)##x+2##color(white)(aaaaaaa)##-##color(white)(aaaaa)##-#
#color(white)(aaaa)##g(x)##color(white)(aaaaaaaa)##-##color(white)(aaaaa)##+#
Therefore, in the interval #I_1#
#g(x)>0# when #x in (-5,-3)#
In the second interval #I_2#
#((x+3)+x)/(x+2)-1>0#
#=>#, #(2x+3-(x+2))/(x+2)>0#
#=>#, #(x+1)/(x+2)>0#
let #h(x)=(x+1)/(x+2)#
Build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-3##color(white)(aaaaaa)##-2##color(white)(aaaaaa)##-1##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+2##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x+1##color(white)(aaaa)##-##color(white)(aaaa)####color(white)(aaaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##h(x)##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore, in this interval #I_2#
#h(x)>0# when #x in (-3,-2) uu (-1,+oo)#
Finally,
The solution is
#x in (-5,-3)uu(-3,-2) uu (-1,+oo)#
That is
# x in (-5,-2)uu(-1,oo)#
graph{(|x+3|+x)/(x+2)-1 [-17.21, 11.27, -7.4, 6.84]}