How do you find an equation of the parabola with vertex (-8,5) and directrix y=19/4?

1 Answer
Jul 20, 2018

The equation is #y=2(x+8)^2+39/8#

Explanation:

Any point #(x,y)# on the parabola is equidistant from the directrix and from the focus

#(y-19/4)=sqrt((x+8)^2+(y-5)^2)#

Squaring both sides

#(y-19/4)^2=(x+8)^2+(y-5)^2#

#y^2-19/2y+361/16=(x+8)^2+y^2-10y+25#

#10y-19/2y=(x+8)^2+25-361/16#

#1/2y=(x+8)^2+39/16#

#y=2(x+8)^2+39/8#

graph{(y-2(x+8)^2-39/8)(y-19/4)=0 [-16.17, 3.83, 0.295, 10.295]}