If #a/b=3/4, b/c=8/9, c/d=2/3# then #(ad)/(b^2)=?#

2 Answers
Jul 25, 2018

The answer is #=81/64#

Explanation:

#a/b=3/4#

#b/c=8/9#, #=>#, #c/b=9/8#

#c/d=2/3#, #=>#, #d/c=3/2#

Therefore,

#(ad)/b^2=a/b*c/b*d/c#

#=3/4*9/8*3/2#

#=81/64#

#81/64#

Explanation:

Given that:

#a/b=3/4, \ b/c=8/9, \ \ c/d=2/3#

#\therefore {ad}/b^2=(a/b)(d/b)#

#=(a/b)(d/c\times c/b)#

#=(a/b)(\frac{1}{(b/c)(c/d)})#

#=(3/4)(\frac{1}{(8/9)(2/3)})#

#=(3/4)(\frac{27}{16})#

#=81/64#