Simultaneous equations #2x+4y=1 and 3x-5y=7#. What do #x# and #y# equal?

1 Answer
Jul 25, 2018

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#2x + 4y = 1#

#2x + 4y - color(red)(4y) = 1 - color(red)(4y)#

#2x + 0 = 1 - 4y#

#2x = 1 - 4y#

#(2x)/color(red)(2) = (1 - 4y)/color(red)(2)#

#x = 1/color(red)(2) - (4y)/color(red)(2)#

#x = 1/2 - 2y#

Step 2) Substitute #(1/2 - 2y)# for #x# in the second equation and solve for #y#:

#3x - 5y = 7# becomes:

#3(1/2 - 2y) - 5y = 7#

#(3 xx 1/2) - (3 xx 2y) - 5y = 7#

#3/2 - 6y - 5y = 7#

#3/2 - 11y = 7#

#3/2 - color(red)(3/2) - 11y = 7 - color(red)(3/2)#

#0 - 11y = (2/2 xx 7) - color(red)(3/2)#

#-11y = 14/2 - color(red)(3/2)#

#-11y = (14 - color(red)(3))/2#

#-11y = 11/2#

#-11y xx color(red)(-1/11) = 11/2 xx color(red)(-1/11)#

#(-11)/color(red)(-11)y = color(red)(cancel(color(black)(11)))/2 xx color(red)(-1/color(black)(cancel(color(red)(11))))#

#y = -1/2#

Step 3) Substitute #-1/2# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = 1/2 - 2y# becomes:

#x = 1/2 - (2 xx -1/2)#

#x = 1/2 - (-2/2)#

#x = 1/2 + 2/2#

#x = (1 + 2)/2#

#x = 3/2#

The Solution Is:

#x = 3/2# and #y = -1/2#

Or

#(3/2, -1/2)#