How do you find the points where the graph of the function #f(x)= 4x^3 - 30x^2 +48x + 0# has horizontal tangents and what is the equation?

1 Answer

Points are #(4, -32)# & #(1, 22)# & the horizontal tangents are respectively

#y+32=0# & #y-22=0#

Explanation:

Given function:

#f(x)=4x^3-30x^2+48x#

The slope of tangent #dy/dx# at any point to the given curve is given by differentiating #f(x)# w.r.t. #x# as folows

#dy/dx=f'(x)#

#=d/dx(4x^3-30x^2+48x)#

#=12x^2-60x+48#

But the horizontal tangent has zero slope i.e. #dy/dx=0#

#therefore 12x^2-60x+48=0#

#x^2-5x+4=0#

#x^2-x-4x+4=0#

#x(x-1)-4(x-1)=0#

#(x-1)(x-4)=0#

#x=4, 1#

setting these values of #x# in given function we get corresponding values of y-coordinates as follows

#f(4)=4(4)^3-30(4)^2+48(4)=-32#

#f(1)=4(1)^3-30(1)^2+48(1)=22#

Hence, the coordinates of the points where tangent is horizontal, are #(4, -32)# & #(1, 22)#

Now, the equations of horizontal tangents with slope #m=0# at the points #(4, -32)# & #(1, 22)# are given by following formula

#y-y_1=m(x-x_1)#

#y-y_1=(0)(x-x_1)#

#y-y_1=0#

Setting #y_1=-32# & #y_1=22# in above equation we get equations of horizontal tangents as follows

#y-(-32)=0#

#y+32=0# &

#y-22=0#