How do you find the slope & equation of tangent line to #f(x)=-1/x# at (3,-1/3)?

2 Answers

Slope #=1/9# & equation: #x-9y-6=0#

Explanation:

Given function:

#f(x)=-1/x#

#f'(x)=1/x^2#

Now, the slope #m# of tangent at the given point #(3, -1/3)# to the above function:

#m=f'(3)#

#=1/3^2#

#=1/9#

Now, the equation of tangent at the point #(x_1, y_1)\equiv(3, -1/3)# & having slope #m=1/9# is given following formula

#y-y_1=m(x-x_1)#

#y-(-1/3)=1/9(x-3)#

#9y+3=x-3#

#x-9y-6=0#

Jul 28, 2018

#y=1/9x-10/3#

Explanation:

#"the slope of the tangent line is "f'(x)" at "x=3#

#f(x)=-1/x=-x^-1#

#f'(x)=x^-2=1/x^2#

#f'(3)=1/(3^2)=1/9#

#y+1/3=1/9(x-3)#

#y+1/3=1/9x-1/3#

#y=1/9x-10/3#