How do you solve #sin^2x+1/2sinx > 0# ?
#sin^2x+1/2sinx > 0#
#t=sinx#
#t^2+1/2t>0 => t(t+1/2)>0#
Interval method
#t=0#
#t=1/2#
So
# - oo < sinx < -1/2 #
# 0< sinx< +oo #
But what do these inequalities mean (with #oo# )?
#sinx< +oo#
#sinx > -oo#
Interval method
So
But what do these inequalities mean (with
1 Answer
See graphs and details. I would add more details, later.
Explanation:
If sin x > 0, so is ( sin x + 1/2 ).
If sin x < 0, sin x < - 1/2, to make sin x + 1/2 < 0.
So,
This happens, when
See graph, for all y, with y-negative in
graph{ (y - 1/2 sin x - ( sin x )^2)= 0[-4 4 -2 2]}
x-not-to-be graph:
graph{ (y - 1/2 sin x - ( sin x )^2)(x+13/6pi+0.0001y)(x+2pi+0.0001y)(x+pi/6+0.0001y)(x+5pi/6+0.0001y)(x+pi+0.0001y)(x-pi+0.0001y)(x-7/6 pi+0.0001y)(x-2pi+0.0001y)(x-11/6pi+0.0001y)= 0[-8 8 -1 0]}