Find the exact value of all six trigonometric functions if #sin theta =8/17# and #cos theta < 0#?

1 Answer
Jul 30, 2018

See explanation...

Explanation:

Given that #sin theta = 8/17# and #cos theta < 0#, we have:

#cos theta = -sqrt(1-sin^2 theta)#

#color(white)(cos theta) = -sqrt(1-(color(blue)(8/17))^2)#

#color(white)(cos theta) = -sqrt(1-64/289)#

#color(white)(cos theta) = -sqrt(225/289)#

#color(white)(cos theta) = -15/17#

Then:

#tan theta = sin theta / cos theta = -8/15#

#cot theta = cos theta / sin theta = -15/8#

#sec theta = 1 / cos theta = -17/15#

#csc theta = 1 / sin theta = 17/8#