#((2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1)/(2^33)#=?
2 Answers
Explanation:
Here's one method...
#((2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1)/2^33#
#=(2^31+2^30+2^29+...+2^3+2^2+2^1+2^0+2^0)/2^33#
#=(2^31+2^30+2^29+...+2^3+2^2+2^1+2^1)/2^33#
#=(2^31+2^30+2^29+...+2^3+2^2+2^2)/2^33#
#vdots#
#=(2^31+2^31)/2^33#
#=2^32/2^33#
#=1/2#
Or if you prefer, let's use binary...
#((2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1)/2^33#
#=(2^31+2^30+2^29+...+2^3+2^2+2^1+2^0+2^0)/2^33#
#=(overbrace(111...1_2)^"32 digits"+1)/(underbrace(100...0_2)_"34 digits")#
#=(overbrace(100...0_2)^"33 digits")/(underbrace(100...0_2)_"34 digits")#
#=1/2#