If #(dx)/(dt) = "8 min"^(-1)# and #y = 1/x#, then what is #(dy)/(dt)# at #x = 2#?

2 Answers
Oct 15, 2015

Let us consider the graph of #y = 1/x# when #x > 0#. When #x# increases, we know that #y# decreases.

We are given #(dx)/(dt) = "8 min"^(-1)# and are looking for #(dy)/(dt)#, and we already have #y = 1/x# as our equation. Notice how:

#x = x(t)# because the x value varies over time
#y = y(x(t))# because y varies as x varies, and x varies over time

So, we can write #(dy)/(dx) = color(green)((dy(x(t)))/(dx(t)))# and #(dx)/(dt) = color(green)((dx(t))/(dt))#. Therefore, using the chain rule with implicit differentiation to find #(dy)/(dt)#:

#color(blue)((dy)/(dt)) = (dy(x(t)))/(dt)#

#= color(green)((dy(x(t)))/(dx(t))*(dx(t))/(dt))#

#= color(blue)((dy)/(dx)*(dx)/(dt))#

So, now let's actually take the derivative with respect to #t#, and then plug in #x = 2#:

#color(blue)((dy)/(dt)) = {:[-1/x^2(dx)/(dt)]|:}_(x=2)#

#= -1/(2)^2*("8 min"^(-1))#

#= color(blue)(-"2 min"^(-1))#

Jul 31, 2018

#y = x^(-1) qquad qquad qquad dy = - x ^(-2) \ dx#

#:. (dy)/(dt) = - 1/x ^( 2) \ (dx)/(dt)#

For #x =2#:

# = - 1/4 *8 = - 2 " min"^(-1)#