If #(dx)/(dt) = "8 min"^(-1)# and #y = 1/x#, then what is #(dy)/(dt)# at #x = 2#?
2 Answers
Let us consider the graph of
We are given
#x = x(t)# because the x value varies over time
#y = y(x(t))# because y varies as x varies, and x varies over time
So, we can write
#color(blue)((dy)/(dt)) = (dy(x(t)))/(dt)#
#= color(green)((dy(x(t)))/(dx(t))*(dx(t))/(dt))#
#= color(blue)((dy)/(dx)*(dx)/(dt))#
So, now let's actually take the derivative with respect to
#color(blue)((dy)/(dt)) = {:[-1/x^2(dx)/(dt)]|:}_(x=2)#
#= -1/(2)^2*("8 min"^(-1))#
#= color(blue)(-"2 min"^(-1))#
For