Here,
#I=intsec^3xdx.....to(A)#
#I=intsecx(sec^2x)dx#
Using Integration by parts:
#I=secx color(blue)(intsec^2xdx)-int(secxtanxcolor(blue)( intsec^2xdx))dx#
#I=secx*color(blue)(tanx)-intsecxtanx*color(blue)(tanx)dx#
#I=secxtanx-intsecxtan^2xdx#
#I=secxtanx-intsecx(sec^2x-1)dx#
#I=secxtanx-intsec^3xdx+intsecxdx#
#I=secxtanx-I+color(red)(intsecxdx)....to[use,eqn.(A)]#
#I+I=secxtanx+color(red)(ln|secx+tanx|)+c#
#2I=secxtanx+ln|secx+tanx|+c#
#I=1/2[secxtanx+ln|secx+tanx|]+c/2#
#I=1/2[secxtanx+ln|secx+tanx|]+C ,where, C=c/2#