How do you find the center and radius for #x^2+y^2-6x-6y+14=0#?
2 Answers
The center is
Explanation:
The general equation of a circle, center
Here, we have
Rearrange the equation and complete the square
The center is
See the graph below.
graph{(x^2+y^2-6x-6y+14)=0 [-3.16, 12.64, -0.57, 7.33]}
Explanation:
#"the equation of a circle in "color(blue)"standard form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)((x-a)^2+(y-b)^2=r^2)color(white)(2/2)|)))#
#"where "(a,b)" are the coordinates of the centre and r"#
#"is the radius"#
#"to obtain this form "color(blue)"complete the square"#
#"on both the x and y terms"#
#x^2-6x+y^2-6x=-14#
#x^2+2(-3)x color(red)(+9)+y^2+2(-3)y color(magenta)(+9)=-14color(red)(+9)color(magenta)(+9)#
#(x-3)^2+(y-3)^2=4larrcolor(blue)"in standard form"#
#"centre "=(3,3)" and "r=sqrt4=2#