#int_0^1 (x^3+x+1)/(x^2+2)^2 dx #?

give me an idea please ?

1 Answer
Mar 16, 2018

#int_0^1 (x^3+x+1)/(x^2+2)^2dx = 1/2(ln3-ln2) + 1/(4sqrt2)arctan(1/sqrt2)#

Explanation:

Note that the derivative of the denominator is:

#d/dx (x^2+2)^2 = 4x(x^2+2) = 4x^3+8x#

so we can split the numerator as:

#x^3+x+1 = 1/4 (4x^3+4x+4) = 1/4( 4x^3+8x)- 1/4(4x-4)#

#x^3+x+1 = 1/4 (4x^3+4x+4) = 1/4( 4x^3+8x)- x +1#

Then using the linearity of the integral:

#int_0^1 (x^3+x+1)/(x^2+2)^2dx = 1/4 int_0^1 ( 4x^3+8x)/(x^2+2)^2dx -int_0^1 x /(x^2+2)^2 dx + int_0^1 dx /(x^2+2)^2 #

Now the first integral can be solved immediately:

#int_0^1 ( 4x^3+8x)/(x^2+2)^2dx = int_0^1 (d((x^2+2)^2))/(x^2+2)^2#

#int_0^1 ( 4x^3+8x)/(x^2+2)^2dx = [ln(x^2+2)^2]_0^1#

#int_0^1 ( 4x^3+8x)/(x^2+2)^2dx = 2(ln3-ln2)#

Similarly for the second integral:

#int_0^1 x /(x^2+2)^2 dx = 1/2 int_0^1(d(x^2+2))/(x^2+2)^2#

#int_0^1 x /(x^2+2)^2 dx = -1/2 [1/(x^2+2)]_0^1#

#int_0^1 x /(x^2+2)^2 dx =-1/2(1/3-1/2) = 1/12#

The third integral can be solved by substitution: let #x=sqrt2tant#, so that #dx = sqrt2sec^2t# and solve the indefinite integral:

#int dx/(x^2+2)^2 = sqrt2 int (sec^2tdt)/(2tan^2t+2)^2#

using the trigonometric identity:

#1+tan^2t = 1+ sin^2t/cos^2t =(cos^2t+sin^2t)/cos^2t = 1/cos^2t =sec^2t#

we have:

#int dx/(x^2+2)^2 = 1/(2sqrt2) int (sec^2tdt)/sec^4t#

#int dx/(x^2+2)^2 = 1/(2sqrt2) int cos^2t dt#

#int dx/(x^2+2)^2 = 1/(2sqrt2) int (1+cos 2t)/2 dt#

#int dx/(x^2+2)^2 = 1/(4sqrt2) int dt + 1/(8sqrt2) cos 2t d(2t)#

#int dx/(x^2+2)^2 = 1/(4sqrt2) t + 1/(8sqrt2) sin(2t) + C#

No to undo the substitution use the parametric formula:

#sin alpha = (2tan(alpha/2) )/(1+tan^2(alpha/2))#

So:

#int dx/(x^2+2)^2 = 1/(4sqrt2)arctan(x/sqrt2) + 1/(8sqrt2) (sqrt2x)/(1+x^2/2) + C#

#int dx/(x^2+2)^2 = 1/(4sqrt2)arctan(x/sqrt2) + 1/4 x/(x^2+2) + C#

and finally:

#int_0^1 dx/(x^2+2)^2 = [1/(4sqrt2)arctan(x/sqrt2) + 1/4 x/(x^2+2) ]_0^1#

#int_0^1 dx/(x^2+2)^2 = 1/(4sqrt2)arctan(1/sqrt2) + 1/12#

Putting it together:

#int_0^1 (x^3+x+1)/(x^2+2)^2dx = 1/2(ln3-ln2) -1/12 + 1/(4sqrt2)arctan(1/sqrt2) + 1/12#

and simplifying:

#int_0^1 (x^3+x+1)/(x^2+2)^2dx = 1/2(ln3-ln2) + 1/(4sqrt2)arctan(1/sqrt2)#