0.850 L of 0.490 M #H_2SO_4# is mixed with 0.800 L of 0.280 M #KOH#. What concentration of #H_2SO_4# remains after neutralization?

1 Answer
Apr 8, 2016

The concentration of #"H"_2"SO"_4# after partial neutralization is 0.185 mol/L

Explanation:

This is really a two-part question:

  1. How much of the #"H"_2"SO"_4# is neutralized?
  2. What is the concentration of the remaining #"H"_2"SO"_4#?

1. How much of the #"H"_2"SO"_4# is neutralized?

This is a volume-moles stoichiometry problem.

The steps are:

a. Write the balanced equation.

b. Use the molarity of #"KOH"# to convert volume of #"KOH"# to moles of #"KOH"#.

c. Use the molar ratio from the balanced equation to convert moles of #"KOH"# to moles of #"H"_2"SO"_4# that reacted.

d. Use the molarity to convert the initial volume of #"H"_2"SO"_4# to moles of #"H"_2"SO"_4#.

e. Calculate the moles of excess #"H"_2"SO"_4#.

a. Write the balanced equation:

#"2KOH" + "H"_2"SO"_4 → "K"_2"SO"_4 + "2H"_2"O"#

b. Calculate the moles of #"KOH"#.

#"Moles of KOH" = 0.800 color(red)(cancel(color(black)("L KOH"))) × "0.280 mol KOH"/(1 color(red)(cancel(color(black)("L KOH")))) = "0.224 mol KOH"#

c. Calculate the moles of #"H"_2"SO"_4# that reacted

The molar ratio of #"H"_2"SO"_4:"KOH"# is #"1 mol H"_2"SO"_4:"2 mol KOH"#.

#"Moles of H"_2"SO"_4 = 0.224 color(red)(cancel(color(black)("mol KOH"))) × (1 "mol H"_2"SO"_4)/(2 color(red)(cancel(color(black)("mol KOH")))) = "0.112 mol H"_2"SO"_4#

2. What is the concentration of the remaining #"H"_2"SO"_4#?

a. Calculate the initial moles of #"H"_2"SO"_4#.

#"Moles of H"_2"SO"_4 = 0.850 color(red)(cancel(color(black)("L H"_2"SO"_4))) × ("0.490 mol H"_2"SO"_4)/(1 color(red)(cancel(color(black)("L H"_2"SO"_4)))) = "0.4165 mol"#

e. Calculate the moles of #"H"_2"SO"_4# remaining

#"Moles remaining" = "initial moles – moles reacted" = "0.4165 mol – 0.112 mol" = "0.3045 mol"#

e. Calculate the molarity of the excess #"H"_2"SO"_4#

#"Molarity" = "moles"/"litres"#

#"Litres" = "Volume of KOH + Volume of H"_2"SO"_4 = "0.800 L + 0.850 L" = "1.650 L"#

#"Molarity" = "0.3045 mol"/"1.650 L" = "0.185 mol/L"#