#int_1^oo (2tln(t))/(1+t^2)^2 dt# can someone help me to find the solutions ?

integrals

1 Answer
Mar 17, 2018

#int_1^oo (2tlntdt)/(1+t^2)^2 = ln2/2#

Explanation:

Solve the indefinite integral by first substituting #x=t^2#, #dx =2tdt#:

#int (2tlntdt)/(1+t^2)^2 = int (lnsqrtxdx)/(1+x)^2#

Now using the properties of logarithms: #ln sqrtx = 1/2 lnx#

# int (lnsqrtxdx)/(1+x)^2 = 1/2 int (lnx dx)/(1+x)^2#

which we can integrate by parts:

#1/2 int(lnx dx)/(1+x)^2 = 1/2 int lnx d(-1/(1+x))#

#1/2 int(lnx dx)/(1+x)^2 = -1/2 lnx/(1+x) + int dx/(x(1+x))#

and using partial fraction decomposition:

#1/(x(1+x)) = A/x +B/(x+1)#

#1 = Ax+ A +Bx#

#A=1, B=-1#

#1/2 int_1^oo (lnx dx)/(1+x)^2 = -1/2 lnx/(1+x) +1/2 int_1^oo dx/x- 1/2 int_1^oo dx/(1+x) #

#1/2 int_1^oo (lnx dx)/(1+x)^2 = -1/2 lnx/(1+x) +1/2 lnx - 1/2 ln (1+x) +C#

#1/2 int_1^oo (lnx dx)/(1+x)^2 = -1/2 lnx/(1+x) +1/2 ln(x / (1+x) )+C#

and undoing the substitution:

#int (2tlntdt)/(1+t^2)^2 = -1/2 ln t^2/(1+t^2) + 1/2 ln (t^2/(1+t^2))+C#

#int (2tlntdt)/(1+t^2)^2 = ln (t/sqrt(1+t^2)) -ln t/(1+t^2) +C#

in conclusion:

#int_1^oo (2tlntdt)/(1+t^2)^2 = -ln(1/sqrt2) = ln2/2#