Question #64fb5
1 Answer
Explanation:
So we have
# (n!)/(4! * (n-4)!) = 21 * ( (n/2)!)/(3! * [(n/2)-3]!#
we have
#(cancel((n-4)!) * n * (n-1) * (n-2) * (n-3))/(4! * cancel([n-4)!]) = 21 * (( cancel((n/2)-4)!) * (n/2) * [(n/2)-1] * [(n/2)-2])/(3! * [cancel((n/2)-4)!])#
#( n * (n-1) * (n-2) * (n-3))/24 = 21 * ( n/2 * [(n/2)-1] * [(n/2) - 2])/6#
so we get
#( cancel(n) * (n-1) * cancel((n-2)) * (n-3))/24 = 21 * ( cancel(n) * cancel(n-2) * [(n/2) - 2])/(2 * 2 * 6)#
#((n-1) * (n-3))/24 =21 * [(n/2)-2]/24#
This is equivalent to
#(n-1) * (n-3) = 21 * (n/2 - 2)#
Next, we get
#n^2 - 4*n +3 = 21*n/2 - 42#
Bringing everything on one side we get
#n^2 - 14.5*n +45 = 0#
Multiplying the whole thing by
#2*n^2 - 29*n +90 = 0#
#2*n^2 - 20*n - 9*n +90 = 0#
#2*n*(n-10) - 9*(n-10) = 0#
#(n-10)*(2*n-9) = 0#
#n=10" "# or#" "n=4.5#