Question #64fb5

1 Answer

#n=10#

Explanation:

#""^nC_4 = 21 * ""^(n/2)C_3#

So we have

# (n!)/(4! * (n-4)!) = 21 * ( (n/2)!)/(3! * [(n/2)-3]!#

we have

#(cancel((n-4)!) * n * (n-1) * (n-2) * (n-3))/(4! * cancel([n-4)!]) = 21 * (( cancel((n/2)-4)!) * (n/2) * [(n/2)-1] * [(n/2)-2])/(3! * [cancel((n/2)-4)!])#

#( n * (n-1) * (n-2) * (n-3))/24 = 21 * ( n/2 * [(n/2)-1] * [(n/2) - 2])/6#

#n/2# goes in #n# twice and #((n/2)-1)# goes in #(n-2)# twice

so we get

#( cancel(n) * (n-1) * cancel((n-2)) * (n-3))/24 = 21 * ( cancel(n) * cancel(n-2) * [(n/2) - 2])/(2 * 2 * 6)#

#((n-1) * (n-3))/24 =21 * [(n/2)-2]/24#

This is equivalent to

#(n-1) * (n-3) = 21 * (n/2 - 2)#

Next, we get

#n^2 - 4*n +3 = 21*n/2 - 42#

Bringing everything on one side we get

#n^2 - 14.5*n +45 = 0#

Multiplying the whole thing by #2# we get

#2*n^2 - 29*n +90 = 0#

#2*n^2 - 20*n - 9*n +90 = 0#

#2*n*(n-10) - 9*(n-10) = 0#

#(n-10)*(2*n-9) = 0#

#n=10" "# or #" "n=4.5#

#n# is a natural number, so #n=10# is the valid answer.