Question #268d4

1 Answer
Jan 17, 2018

#0.2854#

Explanation:

To determine the power series, start with the geometric series:

#sum_(n=0)^oor^n=1+r+r^2+r^3+...=1/(1-r)#

Let #r=-x^2# and substitute into the series to get:

#sum_(n=0)^oo(-x^2)^n=1+(-x^2)+(-x^2)^2+(-x^2)^3+...=1/(1-(-x^2)#

#->sum_(n=0)^oo(-1)^n x^(2n)=1-x^2+x^4-x^6+...=1/(1+x^2)#

Now integrate this (term by term):

#intsum_(n=0)^oo(-1)^n x^(2n)dx =sum_(n=0)^oo(-1)^n x^(2n+1)/(2n+1) #

#=int1-x^2+x^4-x^6+...dx=x-x^3/3+x^5/5-x^6/6+...#

#=int1/(1+x^2)dx=tan^(-1)(x)#

So, we have determined the series for #tan^-1(x)# to be:

#tan^-1(x)=x-x^3/3+x^5/5-x^7/7+...=sum_(n=0)^oo(-1)^nx^(2n+1)/(2n+1) #

It follows that:

#xtan^-1(x)=x(x-x^3/3+x^5/5-x^7/7+...)#

#=x^2-x^4/3+x^6/5-x^8/7+...=sum_(n=0)^oo(-1)^nx^(2n+2)/(2n+1)#

Therefore:

#int_0^1xtan^-1xdx=int_0^1x^2-x^4/3+x^6/5-x^8/7+...dx=intsum_(n=0)^oo(-1)^nx^(2n+2)/(2n+1)dx#

Integrating term by term gives:

#=[x^3/3-x^5/15+x^7/35-x^9/63+...]_0^1#

Integrating the expression in summation notation gives.

#=[sum_(n=0)^oo(-1)^nx^(2n+3)/((2n+1)(2n+3))]_0^1#

Evaluating the limits, it is clear that this would give:

#=sum_(n=0)^oo(-1)^n/((2n+1)(2n+3))=1/3-1/15+1/35-1/63+...#

Now that we see the pattern in the series we can just keep adding on until we have reached the 4 decimal place condition:

#1/3=0.33333#

#1/3-1/15=0.26667#

#1/3-1/15+1/35=0.29524#

#1/3-1/15+1/35-1/63=0.29524#

#1/3-1/15+1/35-1/63=0.27937#

If we keep going until the value is the same for the 4th decimal place 2 times in a row we get to 52 terms, (note #n=0# is the first term so we wish to sum from #n=0# to #n=51#) so:

#int_0^1xtan^-1xdx~~sum_(n=0)^51(-1)^n/((2n+1)(2n+3))=0.2854#

Analytic evaluation of the integral would yield:

#1/4(pi-2)~~0.285398#

so is in agreement with our power series approximation.