Question #aca1d
1 Answer
Explanation:
The idea here is that you need to use the mole ratio that exists between ferric oxide,
#"Fe"_2"O"_text(3(s]) + 3"CO"_text((g]) -> color(purple)(2)"Fe"_text((s]) + 3"CO"_text(2(g])#
Notice that every mole of ferric oxide will produce
To determine how many mole of ferric oxide you get in
#1.00color(red)(cancel(color(black)("kg"))) * (1000color(red)(cancel(color(black)("g"))))/(1color(red)(cancel(color(black)("kg")))) * ("1 mole Fe"""_2"O"_3)/(159.69color(red)(cancel(color(black)("g")))) = "6.262 moles Fe"""_2"O"_3#
Now use the
#6.262color(red)(cancel(color(black)("moles Fe"""_2"O"_3))) * (color(purple)(2)" moles Fe")/(1color(red)(cancel(color(black)("mole Fe"""_2"O"_3)))) = "12.524 moles Fe"#
Finally, use iron's molar mass to find how many grams will contain this many moles of iron
#12.524color(red)(cancel(color(black)("moles"))) * "55.845 g"/(1color(red)(cancel(color(black)("mole")))) = "699.4 g Fe"#
Rounded to three sig figs, the answer will be
#m_"Fe" = color(green)("699 g")#