How do you derive the quadratic formula?
1 Answer
Feb 17, 2016
See explanation...
Explanation:
Given
Note that:
#a(x+b/(2a))^2=a(x^2+b/ax+b^2/(4a^2))=ax^2+bx+b^2/(4a)#
So:
#0 = ax^2+bx+c = a(x+b/(2a))^2 + (c - b^2/(4a))#
Add
#a(x+b/(2a))^2 = b^2/(4a) - c=(b^2-4ac)/(4a)#
Divide both sides by
#(x+b/(2a))^2 = (b^2-4ac)/(4a^2)#
Take the square root of both sides (allowing for either sign) to get:
#x+b/(2a) = +-sqrt((b^2-4ac)/(4a^2)) =+-sqrt(b^2-4ac)/(2a)#
Subtract
#x = -b/(2a)+-sqrt(b^2-4ac)/(2a) = (-b+-sqrt(b^2-4ac))/(2a)#
Note that all of this is based on simple properties of arithmetic, so will work regardless of whether