For simplicity, let:
#I_1=int ((5e^sqrtx)/sqrtx)dx#
and #I_2=int(ln(cos(x/3))/cot(x/3))dx#
#I=I_1+I_2#
#I_1=int((5e^sqrtx)/sqrtx)dx#
Let #t=sqrtx#
then #dt=1/(2sqrtx)dx#
#dx=(2t) dt#
#I_1=int(5e^t/cancelt*2cancelt) dt#
#I_1=10int(e^t)#
#I_1=10e^t + c_1=10e^sqrtx + c_1#
#I_2=int(ln(cos(x/3))/cot(x/3))dx#
Let #u=cos(x/3)#
then #du=-sin(x/3)/3dx#
#dx=-3/sin(x/3)du#
#I_2=-3int(lnu/u)du#
#I_2=-3ln^2u/2 + c_2=-3ln^2cos(x/3)/2 + c_2#
#I=I_1+I_2#
#I=10e^sqrtx -3ln^2cos(x/3)/2 + (c_1+c_2)#
#I=10e^sqrtx -3ln^2cos(x/3)/2 + C# where #C=c_1+c_2#