How do you find the derivative of #y = secx/(1 + tanx)#?
1 Answer
Dec 1, 2016
Explanation:
First of all, I'm assuming the function is
#f(x) = secx/(1 + tanx)#
#f(x) = (1/cosx)/(1 + sinx/cosx)#
#f(x) = (1/cosx)/((cosx + sinx)/cosx)#
#f(x) = 1/cosx xx cosx/(cosx + sinx)#
#f(x) = 1/(cosx+ sinx)#
#f(x) = (cosx + sinx)^-1#
We let
The chain rule states that
#dy/dx = -1/u^2 xx -sinx + cosx#
#dy/dx = (sinx - cosx)/(sinx + cosx)^2#
Hopefully this helps!