How do you find the derivative of #y = secx/(1 + tanx)#?

1 Answer
Dec 1, 2016

#dy/dx = (sinx - cosx)/(sinx + cosx)^2#

Explanation:

First of all, I'm assuming the function is #y = secx/(1 + tanx)#? Call your function #f(x)#.

#f(x) = secx/(1 + tanx)#

#f(x) = (1/cosx)/(1 + sinx/cosx)#

#f(x) = (1/cosx)/((cosx + sinx)/cosx)#

#f(x) = 1/cosx xx cosx/(cosx + sinx)#

#f(x) = 1/(cosx+ sinx)#

#f(x) = (cosx + sinx)^-1#

We let #y = u^-1# and #u = cosx + sinx#. Then #dy/(du) = -1u^(-2)# and #(du)/dx = -sinx + cosx#.

The chain rule states that #color(red)(dy/dx = dy/(du) xx (du)/dx#.

#dy/dx = -1/u^2 xx -sinx + cosx#

#dy/dx = (sinx - cosx)/(sinx + cosx)^2#

Hopefully this helps!