How do you solve #log_2((-9x)/(2x^2-1)) = 1# ?
1 Answer
May 30, 2016
Explanation:
#log_2((-9x)/(2x^2-1)) = log_2(-9x)-log_2(2x^2-1) = 1 = log_2 2#
Since
#(-9x)/(2x^2-1) = 2#
Multiplying both sides by
#-9x = 4x^2-2#
Add
#4x^2+9x-2 = 0#
Use the quadratic formula to find roots:
#x = (-9+-sqrt(9^2-(4*4*-2)))/(2*4)#
#=(-9+-sqrt(81+32))/8#
#=(-9+-sqrt(123))/8#
We can discard
That leaves