Find the equilibrium constant for a 3-electron transfer process, whose standard emf is #"0.59 V"# at #"298.15 K"#? #F = "96485.33 C/mol e"^(-)#
#a)# #10^15#
#b)# #10^20#
#c)# #10^25#
#d)# #10^30#
1 Answer
Jun 28, 2016
The standard EMF (electromotive "force") is
#\mathbf(DeltaG = DeltaG^@ + RTlnQ)#
#\mathbf(DeltaG^@ = -nFE_"cell"^@)# where:
#DeltaG# is the Gibbs' free energy for the process.#DeltaG^@# is the Gibbs' free energy for the process at#mathbf(25^@ "C")# and#\mathbf("1 bar")# pressure.#R = "8.314472 J/mol"cdot"K"# is the universal gas constant.#T# is the temperature at which the process occurs, in#"K"# . For a standard thermodynamic process we assume it is#"298.15 K"# .#n# is the#"mol"# s of electrons transferred.#"F"# is Faraday's constant, which is approximately#"96485.33 C/mol e"^(-)# .#E_"cell"^@# is in#"V"# , and#"1 V"cdot"C" = "1 J"# .
Since we are finding
#DeltaG^@ = -RTlnK_"eq" = -nFE_"cell"^@#
#= e^(("3 mols e"^(-)"/1 mol atom"cdot"96485.33 C/mol e"^(-)cdot"0.59 V")"/"("8.314472 J/mol"cdot"K"cdot"298.15 K")#
#= e^68.89#
#~~ color(blue)(8.3xx10^(29))#
I found the actual answer to this elsewhere, and all they give is