Applying identity
#SinAcosB +cosAsinB=sin(A+B)#
If we put #A =11pi/4 and B= 2pi/3 "in the identity we get"#
#Sin(11pi/4)cos(2pi/3)+cos(11pi/4)sin(2pi/3)=sin(11pi/4+2pi/3)#
#=sin((41pi)/12)=sin(3pi+(5pi)/12)=-sin((5pi)/12)#
#=-sqrt(1/2(1-cos((5pi)/6))#
#=-sqrt(1/2(1-cos(pi-pi/6))#
#=-sqrt(1/2(1+cos(pi/6))#
#=-sqrt(1/2(1+sqrt3/2)#
#=-sqrt(1/8(4+2sqrt3)#
#=-sqrt(1/8(sqrt3+1)^2#
#=-(sqrt3+1)/(2sqrt2)#