#cos(pi/11)cos(2pi/11)cos(3pi/11)cos(4pi/11) cos(5pi/11)#
#=(4sin(pi/11)cos(pi/11)cos(2pi/11)cos(3pi/11)cos(4pi/11)cos(5pi/11))/(4sin(pi/11))#
#=(2sin(4pi/11)cos(4pi/11)cos(pi-"8pi"/11)cos(5pi/11))/(8sin(pi/11))#
#=-(2sin(8pi/11)cos(8pi/11)cos(5pi/11))/(16sin(pi/11))#
#=-(2sin(16pi/11)cos(5pi/11))/(32sin(pi/11))#
#=-(2sin(pi+"5pi"/11)cos(5pi/11))/(32sin(pi-pi/11))#
#=(sin(10pi/11))/(32sin(10pi/11))#
#=1/32#
#color(red)("Explanation of steps")#
#"Multiplyig both numerator and denominator by " 4sin(pi/11)#
# "Applying identity "2sinAcosA=sin2A#