Question #b4e89

1 Answer
Dec 2, 2016

Given

Pressure (P)-Volume (V) relation : #PV^1.4=C#,where C= constant

Differentiating the given equation w.r.t time (t) we get

#Pd/(dt)(V^1.4)+V^1.4(dP)/(dt)=d/(dt)(C)=0#

#=>Pxx1.4xxV^(1.4-1)xx(dV)/(dt)+V^1.4(dP)/(dt)=0#

#=>Pxx1.4xxV^(0.4)xx(dV)/(dt)+V^1.4(dP)/(dt)=0#

#=>(dV)/(dt)=-(V^1.4(dP)/(dt))/(Pxx1.4xxV^(0.4))#

#=>(dV)/(dt)=-(V(dP)/(dt))/(1.4xxP)........(1)#

Now we are also given

#" Pressure "P=93kPa#

#"Volume "V=610cm^3#

#"Rate of change of Pressure with time "(dP)/(dt)=-9" kPa/min"#
(-ve sign represents the decreasing rate with time)

Inserting these values in equation (1) we get the rate increasing volume with time #[(dV)/(dt)]#

#(dV)/(dt)=-(V(dP)/(dt))/(1.4xxP)#

#=>(dV)/(dt)=-(610cm^3xx(-9" kPa/min"))/(1.4xx93kPa)#

#=>(dV)/(dt)~~42.16" cm^3/min"#