How do you factor completely #2x^3+2x^2+3x+2# ?

1 Answer
Sep 6, 2017

#2x^3+2x^2+3x+2 = 2(x-x_1)(x-x_2)(x-x_3)#

where #x_1, x_2, x_3# are derived below...

Explanation:

Given:

#f(x) = 2x^3+3x^2+2x+2#

#color(white)()#
Discriminant

The discriminant #Delta# of a cubic polynomial in the form #ax^3+bx^2+cx+d# is given by the formula:

#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#

In our example, #a=2#, #b=3#, #c=2# and #d=2#, so we find:

#Delta = 36-64-216-432+432 = -244#

Since #Delta < 0# this cubic has #1# Real zero and #2# non-Real Complex zeros, which are Complex conjugates of one another.

#color(white)()#
Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

#0=4f(x)=8x^3+12x^2+8x+8#

#=(2x+1)^3+(2x+1)+6#

#=t^3+t+6#

where #t=(2x+1)#

#color(white)()#
Cardano's method

We want to solve:

#t^3+t+6=0#

Let #t=u+v#.

Then:

#u^3+v^3+(3uv+1)(u+v)+6=0#

Add the constraint #v=-1/(3u)# to eliminate the #(u+v)# term and get:

#u^3-1/(27u^3)+6=0#

Multiply through by #27u^3# and rearrange slightly to get:

#27(u^3)^2+162(u^3)-1=0#

Use the quadratic formula to find:

#u^3=(-162+-sqrt((162)^2-4(27)(-1)))/(2*27)#

#=(-162+-sqrt(26244+108))/54#

#=(-162+-sqrt(26352))/54#

#=(-162+-12sqrt(183))/54#

#=(-81+-6(183))/27#

Since this is Real and the derivation is symmetric in #u# and #v#, we can use one of these roots for #u^3# and the other for #v^3# to find Real root:

#t_1=1/3(root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))#

and related Complex roots:

#t_2=1/3(omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))#

#t_3=1/3(omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))#

where #omega=-1/2+sqrt(3)/2i# is the primitive Complex cube root of #1#.

Now #x=1/2(-1+t)#. So the zeros of our original cubic are:

#x_1 = 1/6(-3+root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))#

#x_2 = 1/6(-3+omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))#

#x_3 = 1/6(-3+omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))#