How do you factor completely #2x^3+2x^2+3x+2# ?
1 Answer
where
Explanation:
Given:
#f(x) = 2x^3+3x^2+2x+2#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 36-64-216-432+432 = -244#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=4f(x)=8x^3+12x^2+8x+8#
#=(2x+1)^3+(2x+1)+6#
#=t^3+t+6#
where
Cardano's method
We want to solve:
#t^3+t+6=0#
Let
Then:
#u^3+v^3+(3uv+1)(u+v)+6=0#
Add the constraint
#u^3-1/(27u^3)+6=0#
Multiply through by
#27(u^3)^2+162(u^3)-1=0#
Use the quadratic formula to find:
#u^3=(-162+-sqrt((162)^2-4(27)(-1)))/(2*27)#
#=(-162+-sqrt(26244+108))/54#
#=(-162+-sqrt(26352))/54#
#=(-162+-12sqrt(183))/54#
#=(-81+-6(183))/27#
Since this is Real and the derivation is symmetric in
#t_1=1/3(root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))#
and related Complex roots:
#t_2=1/3(omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))#
#t_3=1/3(omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))#
where
Now
#x_1 = 1/6(-3+root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))#
#x_2 = 1/6(-3+omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))#
#x_3 = 1/6(-3+omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))#