#cosx(2sinx + sqrt3)(-sqrt2 cosx + 1) = 0#??
1 Answer
Maybe you meant "how do I solve this equation". By the zero-product property, one or all of these factors can be equal to
#cosx(2sinx+sqrt3)( -sqrt2cosx+1) = 0#
- When
#cosx = 0# ,#x = pi/2, (3pi)/2, . . . # , or:
#color(blue)(x = pi/2 pm npi)#
- When
#2sinx + sqrt3 = 0# ,#sinx = -sqrt3/2# . That can occur for#240^@# ,#600^@# ,#960^@# , etc., and#300^@# ,#660^@# ,#1020^@# , etc. Or:
#color(blue)(x = (4pi)/3 pm 2npi)# , where#n# is an integer.
#color(blue)(x = (5pi)/3 pm 2npi)# , where#n# is an integer.
- When
#1 - sqrt2cosx = 0# ,#cosx = 1/sqrt2*(sqrt2/sqrt2) = sqrt2/2# . This occurs when#x = 45^@, 315^@, 405^@, 675^@, . . . # . So#x = pi/4, (7pi)/4, (9pi)/4, (15pi)/4, . . . # , or:
#color(blue)(x = 2npi pm pi/4)# , where#n# is an integer.Note that written this way, this already includes both
#pi/4# and#(7pi)/4# for#0 < x < 2pi# and other corresponding angles in subsequent cycles. For example:
#n = -1 -> x = -(9pi)/4, -(7pi)/4#
#n = 0 -> x = -pi/4, pi/4#
#n = 1 -> x = (7pi)/4, (9pi)/4#
#n = 2 -> x = (15pi)/4, (17pi)/4#
If I took this at face value, I honestly don't think this is equal to
http://www.wolframalpha.com/input/?i=Is+cosx%282sinx%2Bsqrt3%29%28+-sqrt2cosx%2B1%29+%3D+0
If we tried, we would get:
#cosx(2sinx+sqrt3)( -sqrt2cosx+1) stackrel(?)(=) 0#
#(2sinxcosx+sqrt3cosx)( -sqrt2cosx+1) stackrel(?)(=) 0#
#-2sqrt2sinxcos^2x + 2sinxcosx - sqrt6cos^2x + sqrt3cosx stackrel(?)(=) 0#
#2sinxcosx + sqrt3cosx stackrel(?)(=) 2sqrt2sinxcos^2x + sqrt6cos^2x#
#(2sinx + sqrt3)cosx stackrel(?)(=) (2sqrt2sinx + sqrt6)cos^2x#
#cancel((2sinx + sqrt3))cosx stackrel(?)(=) sqrt2cancel((2sinx + sqrt3))cos^2x#
#cosx stackrel(?)(=) sqrt2cos^2x#
#1 stackrel(?)(=) sqrt2cosx#
#1/sqrt2 = sqrt2/2 ne cosx# necessarily. Functions are not always the same as constants.