Question #61aa2

1 Answer
Nov 18, 2016

#inttan^3xsec^2xdx=1/4tan^4x+C#

Explanation:

#inttan^3xsec^2xdx#

the key here is to remember that

#d/(dx)(tan^nx)=ntan^(n-1)xsec^2x#

**see below**

so comparing this with the required integral

try #d/(dx)(tan^4x)#

#=4tan^3xsec^2x#

#inttan^3xsec^2xdx=1/4tan^4x+C#


proof

#d/(dx)(tan^nx)=ntan^(n-1)xsec^2x#

#y=tan^nx#

#u=tanx=>(du)/(dx)=sec^2x#

#y=u^n=>(dy)/(du)=n(u^(n-1))#

by the chain rule

#(dy)/(dx)=(dy)/(du)xx(du)/(dx)#

#(dy)/(dx)=n(u^(n-1))xxsec^2x#

#(dy)/(dx)=ntan^(n-1)x xxsec^2x#

#=ntan^(n-1)xsec^2x#