Question #24569
1 Answer
Explanation:
We have:
#intx/sqrt(x+a)dx#
If we want to use substitution, a good bet would be to let
To deal with this, use the original substitution
#intx/sqrt(x+a)dx=int(u-a)/sqrtudu#
At this point, split the integral through subtraction:
#int(u-a)/sqrtudu=intu/sqrtudu-inta/sqrtudu#
Rewrite using powers:
#intu/sqrtudu-inta/sqrtudu=intu^(1/2)du-aintu^(-1/2)du#
Integrate both using the power rule for integrals:
#intu^(1/2)du-aintu^(-1/2)du=u^(3/2)/(3/2)-a(u^(1/2)/(1/2))+C#
#=(2u^(3/2))/3-2au^(1/2)+C#
#=(2sqrtu(u-3a))/3+C#
Since
#=(2sqrt(x+a)(x+a-3a))/3+C#
#=(2sqrt(x+a)(x-2a))/3+C#