Question #e3aad

1 Answer
Aug 16, 2016

We are to evalute #sin33#.

#sin33=sin(18+15)#

#=sin18cos15+cos18sin15.....(1)#

Evaluation of #sin18 and cos18#

Let #A=18^@#

#=>5A=90^@#

#=>3A=90^@-2A#

#:.cos(3A)=cos(90^@-2A)#

#=>4cos^3A-3cosA=sin2A=2sinAcosA#

#=>4cos^2A-3=2sinA#

#=>4-4sin^2A-3=2sinA#

#=>4sin^2+2sinA-1=0#

#=>sinA=(-2+sqrt(2^2-4*4* (-1)))/(2*4)#

#=(-2+sqrt20)/8=(sqrt5-1)/4#

#:.sin(18^@)=(sqrt5-1)/4#,

#cos18^@=sqrt(1-sin^2 18^@)#

#=sqrt(1-(sqrt5-1)^2/16)#

#=sqrt(16-5-1+2sqrt5)/4#

#=1/4sqrt(10+2sqrt5)#

Evaluation of #sin15 and cos15#

#sin15=sqrt(1/2(1-cos30))#

#=sqrt(1/2(1-sqrt3/2))#

#=sqrt(1/8(4-2sqrt3))#

#=sqrt(1/8(sqrt3-1)^2)#

#=(sqrt3-1)/(2sqrt2)#

#cos15=sqrt(1/2(1+cos30))#

#=sqrt(1/2(1+sqrt3/2))#

#=sqrt(1/8(4+2sqrt3))#

#=sqrt(1/8(sqrt3+1)^2)#

#=(sqrt3+1)/(2sqrt2)#

Using relation (1)

#sin33=sin18cos15+cos18sin15#

#=(sqrt5-1)/4*(sqrt3+1)/(2sqrt2)+sqrt(10+2sqrt5)/4*(sqrt3-1)/(2sqrt2)#

#=1/(8sqrt2)((sqrt5-1)(sqrt3+1)+(sqrt(10+2sqrt5))(sqrt3-1))#