How do you solve #a/(ax-1)+b/(bx-1) = a+b# ?
1 Answer
Jul 1, 2017
Explanation:
Given:
#a/(ax-1)+b/(bx-1) = a+b#
Subtract
#0 = a+b-a/(ax-1)-b/(bx-1)#
Multiply through by
#0 = (a+b)(ax-1)(bx-1)-a(bx-1)-b(ax-1)#
#color(white)(0) = (a+b)(abx^2-(a+b)x+1)-a(bx-1)-b(ax-1)#
#color(white)(0) = (a+b)(abx^2-(a+b)x)+color(red)(cancel(color(black)((a+b))))-2abx-color(red)(cancel(color(black)((a+b))))#
#color(white)(0) = (a+b)(abx^2-(a+b)x)-2abx#
#color(white)(0) = x((a+b)(abx-(a+b))-2ab)#
#color(white)(0) = x((a+b)abx-((a+b)^2+2ab))#
#color(white)(0) = x((a^2b+ab^2)x-(a^2+4ab+b^2))#
#color(white)(0) = (a+b)abx(x-(a^2+4ab+b^2)/(a^2b+ab^2))#
Hence:
#x = 0#
or:
#x = (a^2+4ab+b^2)/(a^2b+ab^2)#