If #f(x)=log_k(x)#, find #f(k^(-1))# and #f^(-1)(2)#?

1 Answer
Oct 27, 2016

Answer:

#f(k^(-1))=-1# and #f^(-1)(2)=k^2#

Explanation:

As #f(x)=log_k (x)#

#f(k^(-1))=log_k (k^(-1))=(-1)log_k k=-1# and

For #f^(-1)(2)#, we will have to find inverse function of #f(x)#.

As #f(x)=log_k (x)#, #x=k^f(x)# and hence #f^(-1)(x)=k^x# and

#f^(-1)(2)=k^2#