Show that # int_0^h int_0^x sqrt(x^2+y^2) dy dx = h^3/6 (sqrt(2) + ln( sqrt(2) + 1) ) #?

1 Answer
Dec 19, 2016

# int_0^h int_0^x sqrt(x^2+y^2) dy dx = h^3/6 (sqrt(2) + ln( sqrt(2) + 1) ) # QED

Explanation:

We want to evaluate:
# int int _R sqrt(x^2+y^2) dA = int_0^h int_0^x sqrt(x^2+y^2) dy dx #

so here #R# is the region:

in the y-direction between #y=0# and #y=x#
in the x-direction between #x=0# and #x=h# (a constant)

This represents a right angled triangle in the first quarter.

enter image source here

If we convert to Polar Coordinates then the region #R# is:

an angle from #theta=0# to #theta=pi/4#
a ray from #r=0# to #r=hsec theta# (as #cos theta = "adj"/"hyp"=h/r#)

And as we convert to Polar coordinates we get:

#x=rcos theta#
#y=rsin theta#
#dA = dy dy = r dr d theta#

So then the integrand #sqrt(x^2+y^2)=sqrt(r^2)=r#

Hence,
# int_0^h int_0^x sqrt(x^2+y^2) dy dx = int_0^(pi/4) int_0^(hsec theta) r r dr d theta #
# " " = int_0^(pi/4) int_0^(hsec theta) r^2 dr d theta #
# " " = int_0^(pi/4) [r^3/3 ]_0^(hsec theta) d theta #
# " " = int_0^(pi/4) ((h sec theta)^3/3 -0) d theta #
# " " = h^3/3 int_0^(pi/4) (sec^3 theta) d theta #
# " " = h^3/3 [1/2sec theta tan theta + 1/2ln|sec theta + tan theta |]_0^(pi/4)#
# " " = h^3/3 {(1/2sec (pi/4) tan (pi/4) + 1/2ln|sec (pi/4) + tan (pi/4) |) - (1/2sec 0 tan 0 + 1/2ln|sec 0 + tan 0 |) } #
# " " = h^3/3 {(1/2*sqrt(2) *1 + 1/2ln| sqrt(2) + 1 |) - (1/2*1*0 + 1/2ln|1 + 0 |) } #
# " " = h^3/3 (1/2*sqrt(2) + 1/2ln( sqrt(2) + 1) ) #
# " " = h^3/6 (sqrt(2) + ln( sqrt(2) + 1) ) # QED

NOTE
As this is an exercise in performing the double integral, I have used (without proof) the results:

#int sec^3x dx = 1/2secx tanx + 1/2ln|secx + tanx|#

And for clarity

# sec(pi/4)=sqrt(2), tan(pi/4)=1, sec 0=1, tan 0 =0 #