The formula for kinetic energy is #E_("K") = frac(1)(2) m v^(2)#; where #m# is the mass of an object and #v# is its velocity.
Let's substitute the given values into the formula:
#Rightarrow E_("K") = frac(1)(2) cdot 1612# #"kg" cdot (95.4 " km/h")^(2)#
First, let's express the units #95.4# #"km/h"# in terms of #"m s"^(- 1)#:
#Rightarrow E_("K") = 806# #"kg" cdot (95.4 cdot frac(1000)(3600) "m s"^(- 1))^(2)#
#Rightarrow E_("K") = 806# #"kg" cdot 645.16# #"m"^(2) cdot "s"^(- 2)#
#Rightarrow E_("K") = 519,998.96# #"kg" cdot "m"^(2) cdot "s"^(- 2)#
Then, let's express this kinetic energy in joules:
#Rightarrow E_("K") = 519,998.96# #"J"#
Now, we must express the kinetic energy in kilojoules.
So let's divide the value by #10^(3)#:
#Rightarrow E_("K") = frac(519,998.96)(10^(3))# #"kJ"#
#therefore E_("K") = 519.99896# #"kJ"#
Therefore, the kinetic energy of this vehicle is around #520# #"kJ"#.