How do you solve #(1/3)^x = -3# ?
1 Answer
Dec 8, 2016
Explanation:
For any Real value of
There are Complex solutions. Consider Euler's identity:
#e^(ipi) = -1#
Hence:
#e^(i(2k+1)pi) = -1" "# for any integer#k#
Now:
#(1/3)^x = (e^(ln (1/3)))^x = e^(-xln(3))#
So if
#(1/3)^x = e^(-ln(3)(-1 + ((2k+1)pi)/(ln(3)) i))#
#color(white)((1/3)^x) = e^(ln(3) + (2k+1)pi i)#
#color(white)((1/3)^x) = e^(ln(3)) * e^((2k+1)pi i)#
#color(white)((1/3)^x) = 3 * (-1)#
#color(white)((1/3)^x) = -3#