Question #c1c34 Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k Dec 13, 2016 #cos(2arcsin(-(√2)/2))# #=cos(2arcsin(-(1/sqrt2))# #=cos(2arcsin(-(sin(pi/4))# #=cos(2arcsin(sin(pi-pi/4))# #=cos(2arcsinsin((3pi)/4))# #=cos(2xx(3pi)/4)# #=cos((3pi)/2)# #=cos(pi+pi/2)# #=-cos(pi/2)=0# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 916 views around the world You can reuse this answer Creative Commons License