Question #f8838 Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k Feb 23, 2017 Since #sinx =2/3->+ve and cosx <0->-ve# the angle x should be II quadrant So #cosx=-sqrt(1-sin^2x)=-sqrt(1-4/9)=-sqrt5/3# #secx=1/cosx=-3/sqrt5# #cscx =1/sinx=3/2# #tanx=sinx/cosx=(2/3)/(-sqrt5/3)=-2/sqrt5# #cotx=1/tanx=-sqrt5/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 885 views around the world You can reuse this answer Creative Commons License