Question #1b893

2 Answers
Feb 27, 2017

see below

Explanation:

Use the following formulas:

  1. #cos(A+B)=cosAcosB-sinAsinB#
  2. #cos 2A=2cos^2 A -1#
  3. #sin 2A=2sinAcosA#
  4. #sin^2A+cos^2A=1#

Left Hand Side:

#cos 3 theta = cos (2theta+theta)#

#=cos2theta cos theta - sin 2 theta sin theta#

#=(2cos^2theta-1)cos theta-2sin theta cos theta*sin theta#

#=2cos^3 theta-cos theta-2cos theta sin^2 theta#

#=2cos^3 theta-cos theta-2cos theta (1-cos^2 theta)#

#=2cos^3 theta-cos theta-2cos theta+2cos^3 theta#

#=4cos^3 theta-3 cos theta#

#:.=# Right Hand Side

Feb 27, 2017

See below.

Explanation:

De Moivre's Formula:

# (cos x +i sin x )^n =\cos nx +i\sin nx #

So:

# (cos x +i sin x )^3 =\cos 3x +i\sin 3x qquad square#

But it is also true from a Binomial Expansion that:

# (cos x +i sin x )^3 =cos^3 x + 3 cos^2 x (i sin x) + 3 cos x (i sin x)^2 + (i sin x)^3 #

#=cos^3 x + 3 i cos^2 x sin x - 3 cos x sin^2 x - i sin^3 x #

Collecting real and imaginary terms:

#=(cos^3 x - 3 cos x sin^2 x)+ i \ (3 cos^2 x sin x - sin^3 x) qquad triangle#

Equating real terms in #triangle# and #square#:

#implies cos 3x = cos^3 x - 3 cos x sin^2 x#

Using the Pythagorean Identity:

#implies cos 3x = cos^3 x - 3 cos x color(red)((1 - cos^2 x))#

#implies cos 3x = cos^3 x - 3 cos x + 3cos^3 x#

#implies cos 3x = 4 cos^3 x - 3 cos x #

Ta da!!

Of course, replace #x# with #theta#