Question #8e483

1 Answer
Feb 25, 2017

Hence, the % rise in the Volume of Cube #=1.5%#.

Explanation:

Let, #x, S and V# denote the Length of Side, Surface Area and

Volume of a Cube.

Then, #S=6x^2 and V=x^3.#

Hence, #V={(S/6)^(1/2)}^3=(S/6)^(3/2)=S^(3/2)/(6sqrt6)...........(1)#

Diff.ing w.r.t. #S, (dV)/(dS)=1/(6sqrt6)(3/2)S^(1/2)=S^(1/2)/(4sqrt6).#

Recall that, #deltaV~~(dV)/(dS)deltaS= S^(1/2)/(4sqrt6)deltaS.#

#rArr (deltaV)/V=S^(1/2)/(4sqrt6)(deltaS)/V.#

#=S^(1/2)/(4sqrt6)(deltaS)/{S^(3/2)/(6sqrt6)}..........[because, (1)]#

#, i.e., (deltaV)/V~~3/2(deltaS)/S.#

#:." The "%" rise in the volume of cube="100(deltaV)/V,#

#~~(3/2)(100(deltaS)/S)#

#=(1.5")(The "%" rise in the surface area of cube)"#

#=(1.5)(1 %)#

Hence, the % rise in the Volume of Cube #=1.5%#.

Enjoy Maths.!