What is the integral #int_0^(2sqrt(3)) x^3/sqrt(16 - x^2) dx#?
1 Answer
Explanation:
Use the trig substitution
#int_0^sin(2sqrt(3)) (4sintheta)^3/sqrt(16 - (4sintheta)^2) * 4costheta d theta#
#int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16 - 16sin^2theta) * 4costheta d theta#
#int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16(1 - sin^2theta)) * 4costheta d theta#
#int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16cos^2theta) * 4costheta d theta#
#int_0^sin(2sqrt(3)) (64sin^3theta)/(4costheta) * 4costheta d theta#
#int_0^sin(2sqrt(3)) 64sin^3theta d theta#
#int_0^sin(2sqrt(3)) 64(1 - cos^2theta)sin theta d theta#
Now let
#int_1^cos(sin(2sqrt(3))) 64(1 - u^2)sintheta * (du)/(-sintheta)#
#-int_1^cos(sin(2sqrt(3))) 64(1 - u^2)du#
#-int_1^cos(sin(2sqrt(3))) 64 - 64u^2 du#
#-[64u - 64/3u^3]_1^cos(sin(2sqrt(3))#
#-[64costheta - 64/3cos^3theta]_0^sin(2sqrt(3))#
#-[16sqrt(16 - x^2) - 1/3(16 - x^2)^(3/2)]_0^(2sqrt(3)#
#-(16sqrt(16 - (2sqrt(3))^2) - 1/3sqrt(16 - (2sqrt(3))^2)^(3/2) - (16sqrt(16 - 0) - 1/3(16 - 0)^(3/2)))#
#-16sqrt(4) + 1/3(4)^(3/2) + 16(4) - 1/3(64)#
#-32 + 8/3 + 64 - 64/3#
#40/3#
Hopefully this helps!