Question #60c7e

1 Answer
Mar 1, 2017

Answer:

#x=-1" or "x=-5#

Explanation:

Isolate the #color(blue)"absolute value function"#

divide both sides of the equation by - 3

#(cancel(-3)|2x+6|)/cancel(-3)=(-12)/(-3)#

#rArr|2x+6|=4#

The absolute value can have a #color(blue)"positive or negative"# solution.

#rArr"solve "2x+6=color(red)(+-)4#

#• 2x+6=color(red)(+4)#

subtract 6 from both sides.

#2xcancel(+6)cancel(-6)=4-6#

#rArr2x=-2#

divide both sides by 2

#(cancel(2) x)/cancel(2)=(-2)/2#

#rArrx=-1tocolor(red)((1))#

#• 2x+6=-4#

#rArr2x=-10#

#rArrx=(-10)/2=-5tocolor(red)((2))#

#color(blue)"As a check"#

Substitute these values into the left side of the equation and if equal to the right side then they are the solutions.

#• -3|-2+6|=-3|4|=-3xx4=-12#

#• -3|-10+6|=-3|-4|=-3xx4=-12#

#rArrx=-1" or "x=-5" are the solutions"#