Is the following function continuous at #x=3# ?
#f(x) = { (2, " if " x=3), (x-1, " if " x > 3), ((x+3)/3, " if " x < 3) :}#
1 Answer
Mar 4, 2017
Yes
Explanation:
Given:
#f(x) = { (2, " if " x=3), (x-1, " if " x > 3), ((x+3)/3, " if " x < 3) :}#
We find:
#lim_(x->3-) f(x) = lim_(x->3-) (x+3)/3 = (color(blue)(3)+3)/3 = 2#
#lim_(x->3+) f(x) = lim_(x->3+) (x-1) = color(blue)(3) - 1 = 2#
#f(3) = 2#
So the left and right limits agree and are equal to
So this
graph{((x-3)/abs(x-3)+1)/2(x-1)+(1-(x-3)/abs(x-3))/2((x+3)/3) [-2.955, 7.045, -0.5, 4.5]}