# What is the value of #x# if #log_6 48 = log_6(x + 7) + log_6(x - 1)#?

##### 1 Answer

Mar 6, 2017

#### Answer:

#### Explanation:

Combine the logarithms.

#log_6 48 = log_6 ((x + 7)(x - 1))#

If

#48 = (x + 7)(x - 1)#

#48 = x^2 + 7x - x - 7#

#48 = x^2 + 6x- 7#

#0 = x^2 + 6x - 55#

#0 = (x+ 11)(x -5)#

#x = -11 and 5#

**Practice Exercises**

- Solve the following equations using
#log_a n - log_a m = log_a(n/m)# and#log_a m + log_a n = log_a (m * n)# .

a)

b)

**Answers:**

a)

b)

Hopefully this helps, and good luck!