#2(a+b)+(a+b)/6+(a+b)^2-2#
= #(2+1/6)(a+b)+(a+b)^2-2#
= #13/6(a+b)+(a+b)^2-2#
= #(a+b)^2+13/6(a+b)-2#
Let #a+b=x#, then quadratic polynomial inside square bracket becomes #x^2+13/6x-2# and as
#x^2+13/6x-2#
= #x^2+2xx13/12xx x+(13/12)^2-2-(13/12)^2#
= #(x+13/12)^2-2-169/144#
= #(x+13/12)^2-457/144#
= #(x+13/12)^2-(sqrt457/12)^2#
= #(x+13/12+sqrt457/12)(x+13/12-sqrt457/12)#
and substituting #x# with #a+b#, we get
#2(a+b)+(a+b)/6+(a+b)^2-2=(a+b+13/12+sqrt457/12)(a+b+13/12-sqrt457/12)#