Given that the sum of two of the roots of #x^3-3x^2-4x+12=0# is zero, how do you factor #x^3-3x^2-4x+12# ?
1 Answer
Mar 12, 2017
Explanation:
If the roots are
#x^3-3x^2-4x+12 = (x-alpha)(x-beta)(x-gamma)#
#color(white)(x^3-3x^2-4x+12) = x^3-(alpha+beta+gamma)x^2+(alphabeta+betagamma+gammaalpha)x-alphabetagamma#
So, equating the coefficients of
#alpha+beta+gamma = 3#
Since the sum of two of the roots is
So
In fact we find:
#x^3-3x^2-4x+12 = x^2(x-3)-4(x-3)#
#color(white)(x^3-3x^2-4x+12) = (x^2-4)(x-3)#
#color(white)(x^3-3x^2-4x+12) = (x^2-2^2)(x-3)#
#color(white)(x^3-3x^2-4x+12) = (x-2)(x+2)(x-3)#