Question #3f390
2 Answers
Explanation:
Consider the just the denominator for a moment.
Demonstrating a principle by example:
Now compare to:
So to remove the roots from the denominator we need to 'force' it to be
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Multiply by 1 and you do not change the value. However, 1 comes in many forms so you can change the way numbers look without changing their intrinsic value.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
But
And
Explanation:
Multiply the numerator/denominator of the fraction by the
#color(blue)"conjugate"# of the denominator.The
#color(blue)"conjugate"" of "sqrt12-sqrt18" is "sqrt12color(red)(+)sqrt18# Considering the denominator.
#color(orange)"Reminder " (sqrtaxxsqrta)=a#
#"Expand " (sqrt12-sqrt18)(sqrt12color(red)(+)sqrt18)# using the FOIL method.
#=12+cancel(sqrt18xxsqrt12)cancel(-sqrt18xxsqrt12)-18#
#=-6larrcolor(red)" rational denominator"#
#rArr2/(sqrt12-sqrt18)#
#=2/(sqrt12-sqrt18)xx(sqrt12+sqrt18)/(sqrt12+sqrt18)#
#=(2(sqrt12+sqrt18))/(-6)#
#=-1/3(sqrt12+sqrt18)# Simplifying
#sqrt12" and " sqrt18#
#sqrt12=sqrt(4xx3)=sqrt4xxsqrt3=2sqrt3#
#sqrt18=sqrt(9xx2)=sqrt9xxsqrt2=3sqrt2#
#rArr-1/3(sqrt12+sqrt18)#
#=-1/3(2sqrt3+3sqrt2)larr" this is acceptable"#
#=-2/3sqrt3-sqrt2#