#tan3theta=tan(2theta+theta)#
#using the compound angle identity
# tan(x+y)=(tanx+tany)/(1-tanxtany)#
#tan3theta=(tan2theta+tantheta)/(1-tan2thetatantheta)#
using the same identity on #" "tan2theta#
#tan3theta=((tantheta+tantheta)/(1-tanthetatantheta)+tantheta)/(1-(tantheta+tantheta)/(1-tanthetatantheta)tantheta)#
now to tidy up
#tan3theta=((2tantheta)/(1-tan^2theta)+tantheta)/(1-(2tantheta)/(1-tan^2theta)tantheta)#
#tan3theta=((2tantheta+tantheta-tan^3theta)/cancel((1-tan^2theta)))/((1-tan^2theta-2tan^2theta)/cancel((1-tan^2theta)))#
#tan3theta=((2tantheta+tantheta-tan^3theta))/((1-tan^2theta-
2tan^2theta)#
giving
#tan3theta=(3tantheta-tan^3theta)/(1-3tan^2theta)#