given ylnydx+(x-lny) dy=0
#rArr(dx)/(dy)=(lny-x)/(ylny)#
#(dx)/(dy)=1/y -x/(ylny)#
#(dx)/(dy) +(1/(ylny))x=1/y# ......(1)
this is a linear differential equation of the form #((dx)/(dy) +P*x=Q)# , where P and Q are either constant or a function of 'y'
So integrating factor is #e^(intPdy)#, and here P = #(1/(ylny))# , Q =#1/y#
multiply equation (1) by #e^(intPdy)#, we get
#e^(intPdy)(dx)/(dy) +Pxe^(intPdy)=Qe^(intPdy)#
#rArr d(xe^(intPdy))/(dy)=Qe^(intPdy)#
#rArrd(xe^(intPdy))=Qe^(intPdy)dy#
integrating both sides
#intd(xe^(intPdy))=intQe^(intPdy)dy#
#xe^(intPdy)=intQe^(intPdy)dy#
substitute P and Q in the above equation
#xe^(int(1/(ylny))dy)=int1/ye^(int(1/(ylny))dy)dy+c.# ...(2)
to solve the integrating factor, put lny=t#rArr (1/y)dy=dt#
#rArr e^(int(1/(ylny))dy)=e^(int(1/tdt)## = e^lnt = t = lny#
so from (2)
#xlny=int1/ylny dy+c.#
to solve R.H.S, using same substitution, you get #int1/ylnydy=((lny)^2)/2#
#rArr xlny=((lny)^2)/2+c.#
#rArr2xlny=(lny)^2+k, k=2c.#
#rArr (lny)^2-2xlny+k=0#
#rArr lny={2x+-sqrt(4x^2-4k)}/2...[because," the quadr. forml.]"#
#:. lny=x+-sqrt(x^2-k).#
#:. y=e^(x+-sqrt(x^2-k))," is the Gen. Soln."#
for particular solution, assuming constant c = 0,we get
#y=e^(x+-sqrt(x^2-0)) rArry=e^(2x) rArr2x=lny"#