Question #e9930

1 Answer
Apr 1, 2017

see explanation.

Explanation:

Utilise the #color(blue)"trigonometric identity"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(sin^2theta+cos^2theta=1)color(white)(2/2)|)))#

From which: #sin^2theta=1-cos^2theta;cos^2theta=1-sin^2theta#

#• 1/(sin^2theta)-(cos^2theta)/(sin^2theta)#

Since both fractions have a common denominator we can subtract the numerators while leaving the denominator.

#=(1-cos^2theta)/(sin^2theta)#

#=cancel(sin^2theta)^1/cancel(sin^2theta)^1larrcolor(red)("from above identity"#

#=1=" right side "rArr" verified"#

#• 1/(cos^2theta)+1/(sin^2theta)#

To obtain a#color(blue)" common denominator".#
multiply the numerator/denominator of #1/(cos^2theta)" by " sin^2theta"#
multiply the numerator/denominator of #1/(sin^2theta)" by " cos^2theta#

#rArr(sin^2theta)/(cos^2thetasin^2theta)+(cos^2theta)/(sin^2thetacos^2theta)#

#=(sin^2theta+cos^2theta)/(cos^2thetasin^2theta)#

#=1/(cos^2thetasin^2theta)larrcolor(red)" from above identity"#

#"Thus left side "=" right side "rArr" verified"#

#• 1/(1+sintheta)+1/(1-sintheta)#

To obtain a #color(blue)"common denominator"#

multiply numerator/denominator of fraction on left by #1-sintheta#

multiply the one on the right by #1+sintheta#

#=(1-sintheta)/((1+sintheta)(1-sintheta))+(1+sintheta)/((1-sintheta)(1+sintheta))#

#=(1cancel(-sintheta)+1cancel(+sintheta))/(1-sin^2theta)#

#=2/cos^2thetalarrcolor(red)" from above identity""#

#"left side "=" right side " rArr" verified"#